Dense Point Cloud Extraction From Oblique Imagery
نویسنده
چکیده
With the increasing availability of low-cost digital cameras with small or medium sized sensors, more and more airborne images are available with high resolution, which enhances the possibility in establishing three dimensional models for urban areas. The high accuracy of representation of buildings in urban areas is required for asset valuation or disaster recovery. Many automatic methods for modeling and reconstruction are applied to aerial images together with Light Detection and Ranging (LiDAR) data. If LiDAR data are not provided, manual steps must be applied, which results in semi-automated technique. The automated extraction of 3D urban models can be aided by the automatic extraction of dense point clouds. The more dense the point clouds, the easier the modeling and the higher the accuracy. Also oblique aerial imagery provides more facade information than nadir images, such as building height and texture. So a method for automatic dense point cloud extraction from oblique images is desired. iii In this thesis, a modified workflow for the automated extraction of dense point clouds from oblique images is proposed and tested. The result reveals that this modified workflow works well and a very dense point cloud can be extracted from only two oblique images with slightly higher accuracy in flat areas than the one extracted by the original workflow. Technology (RIT) for point cloud extraction from nadir images. For oblique images, a first modification is proposed in the feature detection part by replacing the Scale-Invariant Feature Transform (SIFT) algorithm with the Affine Scale-Invariant Feature Transform (ASIFT) algorithm. After that, in order to realize a very dense point cloud, the Semi-Global Matching (SGM) algorithm is implemented in the second modification to compute the disparity map from a stereo image pair, which can then be used to reproject pixels back to a point cloud. A noise removal step is added in the third modification. The point cloud from the modified workflow is much denser compared to the result from the original workflow. An accuracy assessment is made in the end to evaluate the point cloud extracted from the modified workflow. From the two flat areas, subsets of points are selected from both original and modified workflow, and then planes are fitted to them, respectively. The Mean Squared Error (MSE) of the points to the fitted plane is compared. The point subsets from the modified workflow have slightly lower MSEs than the ones from the original workflow, respectively. …
منابع مشابه
Building Footprints Extraction from Oblique Imagery
Nowadays, multi-camera aerial platforms combining nadir and oblique cameras are experiencing a revival and several companies have proposed new image acquisition systems. Due to their various advantages, oblique imagery have found their place in numerous companies and civil applications. However, the automatic processing of such image blocks still remains a topic of research. Camera configuratio...
متن کاملOblique Multi-camera Systems - Orientation and Dense Matching Issues
The use of oblique imagery has become a standard for many civil and mapping applications, thanks to the development of airborne digital multi-camera systems, as proposed by many companies (Blomoblique, IGI, Leica, Midas, Pictometry, Vexcel/Microsoft, VisionMap, etc.). The indisputable virtue of oblique photography lies in its simplicity of interpretation and understanding for inexperienced user...
متن کاملComprehensive Analysis of Dense Point Cloud Filtering Algorithm for Eliminating Non-Ground Features
Point cloud and LiDAR Filtering is removing non-ground features from digital surface model (DSM) and reaching the bare earth and DTM extraction. Various methods have been proposed by different researchers to distinguish between ground and non- ground in points cloud and LiDAR data. Most fully automated methods have a common disadvantage, and they are only effective for a particular type of surf...
متن کاملBenchmarking High Density Image Matching for Oblique Airborne Imagery
Both, improvements in camera technology and new pixel-wise matching approaches triggered the further development of software tools for image based 3D reconstruction. Meanwhile research groups as well as commercial vendors provide photogrammetric software to generate dense, reliable and accurate 3D point clouds and Digital Surface Models (DSM) from highly overlapping aerial images. In order to e...
متن کامل3D Classification of Urban Features Based on Integration of Structural and Spectral Information from UAV Imagery
Three-dimensional classification of urban features is one of the important tools for urban management and the basis of many analyzes in photogrammetry and remote sensing. Therefore, it is applied in many applications such as planning, urban management and disaster management. In this study, dense point clouds extracted from dense image matching is applied for classification in urban areas. Appl...
متن کامل